

Raptor – Software and Applications on BlueGene/L*

Jeff Greenough, Allen Kuhl, Louis Howell, Alek Shestakov, Ulrike Creach, Al Miller and Ellen Tarwater Andrew Cook and Bill Cabot

AX-Division, LLNL

BlueGene/L: Applications, Architecture and Software Workshop October 14-15, 2003 Reno, NV

*This work was performed under the auspices of the US Department of Energy by the University of California, Lawrence Livermore National Laboratory under Contract No.W-7405-ENG-48.

Outline

- Project and Software Overview
- Current work/performance on MCR & ALC
- Mapping to BG/L
- Applications on BG/L

Project Overview

- AMRh is the code development project; *Raptor* is the code.
 - Develop modern numerical methods in a software framework that supports Adaptive Mesh Refinement (AMR).
 - Apply the high-resolution numerical methods to problems related to instability development and transition to turbulence → closely coupled to the Complex Hydrodynamics Program (P. Miller)
 - The goal is to use Raptor to provide detailed simulation data and augment experimental data for guiding/verifying model development. Efficiently carry out parameter/sensitivity studies at high resolution.
 - Use as a testbed for developing a high resolution LES capability for shock-driven flows. Examine underlying Godunov integrator, investigate scheme improvements, utility of SGS models, etc.

AMR Overview

- AMR is a technique for efficiently increasing resolution in space and time.
- Maximize resolution for a fixed computational cost.
 - Base Grid is Level 0 and covers all of computational domain
 - Locally refine spatially to create a new level. Tag structures, errors, etc. for refinement. Create blocks.
 - Finer levels strictly contained in next coarser level -> proper nesting
 - Sub-cycle finer grids in time (temporal resolution)
 - Data on a level (union of grids) maintained as a fundamental object

AMR Utility

• AMR is an enabling technology for grid refinement, parameter and sensitivity studies. Making this the rule rather than the exception.

M=1.2 RM Initial Amplitude Sensitivity Study

Godunov Method Improvements

- Modern Godunov method seems to be a good second order scheme for shock-driven flows (P. Colella, 1985).
- Pursuing improvements to the current method to give a good match for LES.

- Simple Wave is an exact solution to the Euler Eqn's before breaking.
- Examine the spectra at $t=0.75 t_b$.
- Compare exact solution spectra to result using different slope limiters.
- Follow "best practice" of LES SGS modelling community.

Simple Wave Spectra Comparison

- Raptor is a hybrid C++/Fortran code
 - Current code is based on BoxLib infrastructure, provided by CCSE (John Bell) at LBNL, (http://seesar.lbl.gov/ccse/Software/#anchor-apps) which is part of a larger applications suite.
 - Base Libraries provide data container classes, high level memory management, runtime profiling, interface to I/O routines and parallelism.
 - Parallelization models: MPI and pthreads.
 - Point-to-point communication is asynchronous. Global reduction at the end of a timestep.
 - Each processor communicates with any other processor only once. Efficient use of buffers.
 - Grids on a level is the fundamental object. Distribute Grids among the available processors.

- I/O model: N processes write to N files.
 - Explicit barrier before writing restart/visualization files.
 - Number of CPU's before/after restart can be different.
- Supporting libraries
 - AmrLib is an extension of BoxLib supporting adaptive, block, datasets (hierarchical data and data on a level). Virtual base classes.
 - AMR case → multiple levels of data, multiple grids.
 - non-AMR case → single level of data, multiple grids.
 - BndryLib is also provided which gives boundary object support (physical boundary conditions, geometrical support and coarse/fine grid operations).

- LLNL owns the physics modules and associated multi-level objects (instantiation of the virtual base class).
 - Explicit methods (multifluid hydrodynamics)
 - Conservative, upwind, monotone finite difference methods (Godunov).
 - Nearest neighbor algorithm using ghost cells (3).
 - Implicit methods (diffusion-radiation)
 - Requires solving a multi-block banded linear system.
 - Requires 1 ghost cell of Dirichlet data.
 - Currently reliant on *Hypre* package (multigrid based methods).

- Coarse/fine level synchronization algorithms (refluxing) are required for global, with respect to the hierarchy, conservation.
 - Explicit methods use explicit refluxing
 - Special purpose boundary object accumulate flux mismatch. Coarse level updated.
 - Implicit methods use implicit synchronization
 - Flux mismatch accumulated. Both fine and coarse levels updated iteratively.

- Current code builds and runs on LC Linux clusters (IA32 system).
 - Running on other LC platforms as well (gps, tc2k, frost, etc.)
- Uses g++ and g77. GNUmake file system.
 - Intel and IBM compilers also.
- Additional libraries for *pdb* support
 - Tabular EOS and opacity database format (LEOS). Data is exported controlled.

Code Capabilities

- Physics capabilities (working)
 - Full set of coordinate systems
 - Cartesian, cylindrical and spherical in 1,2,3D)
 - Hydrodynamics (multi-fluid capturing or tracking)
 - Gray Radiation diffusion
 - Electron conduction
 - Analytic/tabular EOS/opacity (export controlled data)
- Physics capabilities (under development)
 - Multi-group diffusion
- C-preprocessor directives control physics package inclusion and Makefile controls linked libraries.

- Raptor has been running at scale on ALC & MCR since July '03,
 - Supporting RT simulations of A. Cook and W. Cabot, LLNL.
 - Performing high-resolution 3D multi-mode RM simulations.
- The test problem is a 3D single level (multiple grids) RT 2-fluid problem (hydrodynamics only).
 - L x L x 2L. Periodic transverse boundary condition. Rigid top and bottom boundaries.
 - One 32³ grid per CPU, i.e. workload per CPU is fixed.
 - Block size is runtime adjustable. 32^3 is cache friendly; surface to volume ratio is about 1/2.

Scaling on ALC & MCR

Unset envirn. variables to get > 2Gb memory

- g++/f77 results
- •About 94% overall parallel efficiency
- Wall clock time is relatively flat

- 3D multimode RM. M=1.3, At=0.6 (Air/Sf₆ model).
 - Lab-fixed coordinates. 1.5m x 10cm x 10cm. Rigid endwall.
 - 512² effective transverse resolution, $\Box x = 195 \Box m$

View of density field – Early time after first shock

- 3D multimode RM. M=1.3, At=0.6 (Air/Sf₆ model)
 - 512² effective transverse resolution

View of density field slice – Late time after multiple accelerations

- Final statistics from AMR run:
 - 8.2 days of CPU time. 2.5@1920 CPU's + 5.7@1024 CPU's
 - Simulation time of 23 msec
 - 205M cells on finest level $\rightarrow \sim 7700 \ 32^3$ grids
 - At t=0, 13M cells \rightarrow ~ 512 32³ grids
 - Could re-tune problem by increasing block size. Reduce the block count (same cell count). Reduce communication, reduce surface to volume ratio. Performance effect?

Mapping to BG/L

- Currently require about 30Mb per 32³ grid block for a 2 fluid prototype problem (targeting RM/RT).
- 32Tb available on 65536 compute nodes of BG/L gives 3270³ effective problem size.
- Still room for improvement:
 - Only one time level of data required for finest level (or single level). Near factor of two decrease in memory requirement. *Effective problem size is* 4030^3

Mapping to BG/L

- Currently grid distribution algorithms do not consider physical proximity.
 - Infrastructure support for modifying grid distribution/mapping algorithms.
- Better quantify the "overlap" of memory utilization for AMR calculations.
 - Dynamic nature of
- Addressed major inefficiencies on MCR & ALC:
 - Loop over Gather's replaced by MPIAlltoall (4x speedup for single level, 4x speedup for multiple level)

Applications on BG/L

- What's this in real units (M=1.3, air/SF6)?
 - Taylor length , \Box , is O(50 \Box m) with Re = 2000 \rightarrow ~ 2 cells/ \Box on BG/L.

• Most highly resolved 2D shock-driven flow done to date, e.g. M=1.2 shock/jet interaction used 20 cells/ □. UofA Exp.

Applications on BG/L

- Improvements to the underlying Godunov method provides additional effective resolution
 - Increased "roll-up" indicates improved resolving power (reduced intrinsic dissipation).

Applications on BG/L

- Examine turbulence in a NIF double shell ignition capsule
 - 90 degree 3D wedge with cell size ~ ☐ (Taylor Length)
 - Just before ignition, Re $\sim 3 \times 10^5$ at outer mix region $\rightarrow \square \sim 0.1 \ \mu m$
 - Assuming $\Box x \sim \Box$, gives $\sim 1600^3$ effective problem size

- Requires scalable and efficient linear solvers for the nonlinear problem
- Memory footprint for linear solver appears to be within the footprint for full-memory hydro.
- Requires Export Controlled database (EOS and opacity).

Summary/Strategy for Success

- Target high-resolution prototype RM problem
 - BG/L capability should allow realization of a fully-resolved shock-driven turbulent flow
 - Late time single-shock asymptotic state
 - Late time multiply-accelerated turbulent state
- Target high-resolution prototype of a two-shell NIF ignition capsule (ditto above)

Summary/Strategy for Success

- Utilize the BG/L Simulator on ALC
 - Single level tests (multiple grids) to test performance and identify issues
 - Adaptive tests (multiple levels, multiple grids) to test performance and identify issues.
 - Scrutinize the linear solvers and their usage/performance in Raptor.
- Additional development
 - Re-work our I/O model, grid distribution algorithm (hardware awareness)
 - Convert some post-processed diagnostics to runtime ones
 - Additional items as they appear.